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ABSTRACT 

We study the structure of Lie algebras in the category HAd of 

H-comodules for a cotriangular bialgebra (H, ( I )) and in particular the 

H-Lie structure of an algebra A in HA//. We show that if A is a sum of two 

H-commutative subrings, then the H-commutator ideal of A is nilpotent; 

thus if A is also semiprime, A is H-commutative. We show an analogous 

result for arbitrary H-Lie algebras when H is cocommutative. We next 

discuss the H-Lie ideal structure of A. We show that if A is H-simple 
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and H is cocommutative, then any non-commutative H-Lie ideal U of A 
must contain [A, A]. If U is commutative and H is a group algebra, we 
show that U is in the graded center if A is a graded domain. 

I n t r o d u c t i o n  

The generalized Lie algebras considered in this paper are Lie algebras in the 

category Hj~ of H-comodules where (H, ( I )) is a cotriangular bialgebra over 

the commutative ring k. They are a special case of the generalized Lie algebras 

discussed by Gurevich [G] and Manin [Man], and include as special cases Lie 

superalgebras and Lie coloralgebras. We shall be mostly interested in the H-Lie 

structure of an associative algebra A in HM; here the definition of the Lie product 

[ ,  ] on A depends on the particular braiding ( I ): H ® H -* k which gives H its 

cotriangular structure. 

We note that  Lie algebras in Hj~ have already been studied in [FM], where a 

Schur centralizer theorem was proved for A = End(V), V a finite-dimensional 

vector space in HA/[. We also note that if one wishes to study generalized Lie 

algebras in the category HM of comodules over any bialgebra H, then in fact 

H must be cotriangular. For, H~ must be a symmetric monoidal category, and 

it then follows by [LT] that H is cotriangular; see also [Mo, 10.4.2]. Thus the 

present setting is the most general possible for generalized Lie algebras of this 

type. 

In Section 2, we study the H-commutativi ty of A, that  is, when [A, A] = 0. We 

show that  if A is a sum of two H-commutative subrings, then the H-commutator  

ideal of A is nilpotent; thus if A is also H-semiprime, A is H-commutative.  

When H is cocommutative, we obtain an analogous result for any H-Lie algebra 

£: which is the sum of H-abelian Lie subalgebras. These results generalize work 

of [BG] for ordinary associative algebras and of [BK] for coloralgebras (the case 

when H = kG,  a group algebra). 

In Section 3, we turn to the H-Lie ideals of A, and extend some of Herstein's 

work on the (usual) Lie structure of associative rings [HI], [H2]. We first consider 

H-Lie ideals U of A for which [U, U] ¢ 0 and show that  the subring of A generated 

by U contains a non-zero H-ideal of A. If also H is cocommutative and A is H- 

prime, we show that  there exists an H-ideal I of A such that  0 ¢ [ I ,  A] C_ U. 

Thus if A is H-simple, U _D [A, A]. 
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For H-commuta t ive  H-Lie ideals U, one would like to show that  if A is H-  

prime, then U C_ ZH(A), the H-center of A, unless A is four-dimensional over 

k (in which case well-known counter examples already exist, such as the Lie 

superalgebra A = gl(1, 1)). However, the H-commutat ive  case is more difficult, 

and here we specialize to the case of Lie coloralgebras, that  is, H = kG. We 

prove that  if A is graded semiprime of characteristic not 2, and U is a graded Lie 

ideal of A with [U, U] = 0, then the even component U+ of U is contained in the 

graded center of A (when H -- kZ2, the Lie superalgebra case, this says that  the 

even part  of U is central). Moreover, the homogeneous elements of U_, the odd 

component,  are nilpotent and so U C_ Za(A) if A is a graded domain. 

Finally, in the last section we consider some examples. In particular, the first 

Weyl algebra A = A1 is Z2-graded, and so has the structure of a Lie superalgebra. 

We apply the results of Section 3 to see that  if U ¢ k is a (super) Lie ideal of 

A, then U _D [A, A]. We also show that  some H-Lie algebras constructed using. 

H = Oq(Mn(k)) can be viewed as Lie coloralgebras for G = (Z2) n. 

ACKNOWLEDGEMENT: We wish to thank S. Westreich for helpful comments. 

1. De f in i t i ons  

Throughout,  k denotes a commutative ring, tensoring will be over k, and H will 

be a bialgebra or a Hopf algebra over k. We use Sweedler's notation [Sw], leaving 

out subscript parentheses in the summation notation. 

Recall that  if H is a bialgebra and M a left H-comodule with coaction 

(1.1) p:M-- -*HQM,  m ~ - - ~ - ~ m - l ® m o  V m E M ,  

then coassociativity of the coaction means (A ® id) o p = (id ® p) o p; applying 

this to any m E M we get 

 (m_1)1 ® ®too = ® ® (m0)0 

(1.2) = ~ -~ m-2  @ m-1  @ too. 

In this paper  we consider objects in the category of left H-comodules, HA/[. In 

particular, a left H-comodule algebra A is an algebra in this category; this means 

that  multiplication in A is an H-comodule map: 

(1.3) p(ab) = p(a)p(b) = ~ a_,b-1 ® aobo Va, b e A. 
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Suppose that  C is a symmetric monoidal category [Mac, p.180]; that is, C has 

a tensor product on its objects satisfying certain associativity conditions and a 

twist map 

(1.4) r: M ® N--* N ® M VM, N e C 

satisfying the braid conditions, such that T 2 = id. Then we may define the 

concept of a Lie algebra in the category C as follows: 

Definition 1.5: A Lie a lgeb ra /3  in t h e  s y m m e t r i c  mo n o i d a l  c a t e g o r y  C is 

an object £ of C together with a bracket operation [, ]:/3 ® £ --, £ which is a 

C-morphism satisfying: 

(a) anticommutativity in C:  [, ] o (id + r) = 0, 

(b) a C-Jacobi identity: 

[,  ] o ([, ] ® id)(id + ~-12T23 + T23T12) = 0 

where T~j is T applied to the i and j components of the tensor product 
£ ® £ ® £ .  

Gurevich introduced this notion in terms of the "R-matrix" solutions of the 

quantum Yang-Baxter equation in [G]. Manin more generally defines a "T-Lie 

algebra" in [Man], although he does not seem to note that  the category must be 

symmetric, in order that (a) hold. 

We are interested in Lie algebras in a particular type of symmetric monoidal 

category: that  of the left H-comodules for a cotriangular H. In this case, HA/[ 
being braided monoidal is equivalent to H being coquasitriangular [LT]; adding 

the symmetry condition T 2 ---- id forces H to be cotriangular. 

Definition 1.6: A pair (g ,  ( I )) is called a coquas i t r i angu la r  b ia lgebra  (I-Iopf 

a lgebra)  if H is a bialgebra (Hopf algebra) and ( [ ): H ® H --* k is a k-bilinear 

form satisfying Vh, g, g E H: 

(a) E(hx[gllg2h2 = E hlgl(h2192), 

(b) ( [ ) is convolution invertible in HOmk(H ® H, k), 

(c) (h]gg) = E(hl[g)(h2[g), 

(d) (hgle) = E(gftl)(hle ). 
If, in addition, ( [ ) is symmetric, that  is 

(e) E(h1Igi)(g2Ih2) = e(g)e(h) Vh, g • H, 

then (H, ( [ )) is called co t r iangula r .  

The map ( [ ) is called the braiding.  
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In the category HA/I, the twist map T: M ® N : ~  N ® M, N, M E C is given 

explicitly by 

(1.7) ~ - ( m O n ) = E t m _ l t n _ l ) n 0 Q m 0  V m E M ,  n • N .  

Then symmetry of T is equivalent to symmetry of the braiding ( I }. 

From here on, assume that  (H, ( I }) is cotriangular. In this case a Lie algebra 

£ in HAl is called an H-Lie  a lgebra,  and the conditions in Definition 1.5 can 

be written explicitly as follows, Vn, m, 2 • £: 

H-anticommutativity: 

(1.8) [m, n] + E(m_lln_l}[no,  m0] -- 0, 

H-Jacobi identity: 

[[2, m], n] + E (2_ l m-11 n -1 }[[n0,201, mo] 
(1.9) 

+ E(t - l lm- ln-1}[[mo,  n0], 20] -- 0. 

The fact that  [, ] is a map in HAl means that 

(1.10) p([m, n]) = E m-in-1  ® [mo, no]. 

Example 1.11: Let A be an algebra in the category C = H/~ for some cotriangular 

bialgebra (H, ( I }) as in (1.3). Let A-  be the set A together with the C-Lie bracket 

[, ]: A-  ® A-  --* A-  defined by 

[a, b] = ab - E(a_llb_llboao, 

Va, b E A- .  Then A-  is a C-Lie algebra. 

When A is an algebra in Hj~, we consider some H-analogues of classical 

concepts of ring theory and of Lie theory. In general, the structures will be 

H-comodules in addition to the usual requirements. 

De~nition 1.12: Let A be an algebra in Hj~. 

(a) The H - c e n t e r  of A is defined to be: 

ZH(A) := {a E AI [a,A] = [A,a] = 0}. 

(b) A is called H - c o m m u t a t i v e  if [A, A] = 0. More generally, [A, A] is the 

H - c o m m u t a t o r  of A. 

(c) An H- idea l  I of A is an H-subcomodule of A which is also an ideal of A. 
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(d) An H-L ie  ideal  U of A is an H-subcomodule of A satisfying [U, A] C U. 

(e) A is called H - p r i m e  if the product of any two nonzero H-ideals of A is 

nonzero. 

(f) A is called H - s e m i p r i m e  if A has no nonzero nilpotent H-ideals. 

(g) H is called H- s imp le  if A has no nontrivial H-ideals. 

Example 1.13: If H = kG for some abelian group G with a symmetric bicharacter, 

then A is a G-graded algebra and the above definitions become the familiar graded 

ideal, graded prime, and so on [NvO]. However, the graded center depends on 

the particular choice of bicharacter. 

Remark 1.14: 

(a) In the definition of H-center of A, a one-sided condition is sufficient if H is 

a Hopf algebra with bijective antipode, since in this case {a 6 Al[a, A] = 0} 

is an H-comodule, as is true in the classical case. This follows from Lemma 

3.5(b). 

We will see in Corollary 3.6 that ZH(A) is always a subring of A. 

(b) The concept of H-commutative algebras in the dual situation, that  is when 

H is quasitriangular and A is an H-module algebra, was studied in [CW], 

where they were called "quantum commutative". 

(c) Note that [A, A] is an H-eomodule because of (1.10), and thus it is an H-Lie 

ideal of A. 

(d) To define an H-Lie ideal, a one-sided condition is sufficient, since [U, A] C 

U =~ [A,U] C_ U. For, given u E U,a E A,[a,u] = -Z(a_lIu_l)[uo,  ao] 

by H-anticommutativity;  the right side is contained in U since U is an 

H-subcomodule and [U, A] C_ U. 

(e) The terms H-ideal, H-prime, etc. usually mean that  the objects under 

s tudy are stable under an action of H, rather than a coaction. How- 

ever, in our situation, any H-comodule is also an H-module, via h • m = 

~ ( m - 1  [h)mo, for any h E H and m C m EHJ~ with p(m) = ~ m_l®mo. 

Thus our terminology is consistent. 

2. A l g e b r a s  wh ich  a re  sums  o f  H - c o m m u t a t i v e  subalgebras 

In this section we consider algebras in H.A~ which are sums of H-commutative 

subalgebras in HAJ. We generalize some recent work of Bahturin and Kegel [BK] 

for superalgebras, which in turn generalizes work of Bahturin and Giambruno 
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[BG] for ordinary algebras; both  of these papers were inspired by a classical result 

of Kegel [Kg] which says that  a ring which is a sum of two nilpotent subrings is 

nilpotent. 

THEOREM 2.1: Let (H, ( I ) )  be a cotriangular bialgebra and R an algebra in 

H~V~ with A and X subatgebras in Hj~ which are H-commutative, such that 

R = A + X .  Then R satisfies the following identity: 

JR, R][R, R] = 0. 

Proo~ I t  is obvious that  it is sufficient to prove the triviality of a product of 

commutators  of the form [a,x][b,y] with a, b E A and x, y • X. Now it follows 

from the hypotheses that  

xb = c +  z, with c E A and z E X. 

Writing p(a) = E a _ l  ® ao and p(y) = E y - 1  ~ yo, w e  set 

aoYo=f (ao ,  Yo)+t(ao,  Yo) 

for each pair of components ao, Y0, where f(a0,Y0) E A and t(ao, Yo) e X .  

Applying (id ® p) o p = (A ® id) o p to a and to y, we obtain 

(2.2) 

~--~[a-1 ® Y-I ® f(ao, Yo)-I ® f(ao, Yo)o 

+ a-1 ® Y-1 @ t(ao, Yo)-i @ t(ao, Yo)o] 

-- E [ a - 2  (~ Y-2 ® a- lY-1  Q f(ao,  Yo) 

+ a-2 Q Y-2 ® a - l y - 1  Q t(ao, Yo). 

We use (2.2) to show an identity we will need below. Tha t  is, 

(2.3) 

E (a-llx-1)(b  -lly-1)xoaoyobo 
E(a-llX-lb-1)¢(Y-1)xobof(ao, Yo) 
+ la-,)¢(a-,)t(ao,  yo)Xobo. 
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To see this, we also use the H-commutativity of A and X and the braiding 

axioms: 

E(a-llx-1)(b-l lY-1)xo(f(ao,  Yo) + t(ao, yo))bo 

-- E ( a - 1  Ix-l)(b-1 ]Y-l} [Xo E ( f ( a o ,  Yo)-i ]bo,-1)bo,of~ao, Yo)o 

+ E ( x o - 1 ] t ( a o ,  yo)-l}t(ao, Yo)oXo,obo] 

= E(a-21x-1}(b-1]y-2}[xo E{a-ly-ltbo,-1}bo,of(ao, yo) 

+ E(xo,_l]a_ly_l}t(ao, yo)xo,obo] using (2.2) 

-=- E(a_2]X_l}(b_2]y_2)(a_ly_l ]b-1}xobof(ao, yo) 

+ E ( a - 2 ] x - 2 } ( b - 1  ly-2} (x-1]a-ly-1}t(ao, yo)xobo 

~- E ( a _ 2  IX-l} (b-3 lY-2} (Y-1 Ib-2} (a-1 ]b-1}xobof(ao, Yo) 

+ E(a-21x-3}(b-1 fy-2} (x-21a-1}(x-lly-1}t(ao, yo)xobo 

-- E ( a _ 2  IX_l} (a-1 ]5-1}~(y-1)xobof(ao, Yo) 

+ E(b-1]y-2}(x-1]y-1}e(a-1)t(ao, yo)xobo 

= E ( a - 1  ]x-lb-1}e(y-1)xobof(ao, Yo) 

+ E(X-lb-lly-1)c(a-1)t(ao, yo)xobo, 

where the last two equalities used Definition 1.6 (c), (d) and (e). 

Now we start our computation of [a, x][b, y]. We have 

[a, x][b, y] -- E ( a x  - (a-1 Ix-1)xoao)(by - (5-1 lY-1)yobo) 

= E ( a x b y  - (a-llx-1)xoaoby - (b-lly-1)axyobo 

+ (a-llx-1)(b-lly-1)xoaoYobo). 

We use H-commutativity of A and X, that xb = c + x, and coassociativity of 

p, to rewrite this as: 

[a, x][b, y]=acy + azy - E(a_21x_l)(a_llb_l)xoboaoYo 

- E(b_lly_2}(X_ltY_l)ayoxobo ÷ E(a-llx-1)lb-lly-1)xoaoyo50. 

By properties 1.6 (c) and (d) of the braiding, we have for each component 

E(a-21x-1)(a-l[b-1) =(a-l[x-lb-1), and 

E (b-x]Y-2)(X-xlY-1} =(x-la-llY-1). 
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Applying these, H-commutativity of A and X, and the fact that 

x_lb-1 ® xobo = ~ c-1 ® co + ~ z-1 ® Zo we continue in the following way: 

[a, x][b, y] 

-= E <a-llC-l>c°a°Y + E (Z-llY-l>ay°z° - E <a-l[C-l>coaoy 

- E<a_llz_l>zoaoy- E<C_llY_l>ayoco- E<Z_llY_l}ayozo 

+ E(a-l[X-1)(b-l[y-1}xoaoYobo 

= E -<a-1 [z-l>e(y-1)zoaoYo - E<c-lly-1}e(a-1)aoYoCo 

+ E(a-l[X-l>(b-llY-l>xoaoYobo 

= E -(a-t[z-1}e(y-1)zof(ao, Yo) - E(a-11z-1)e(Y-1)zot(aoyo) 

- E { c - 1  ]y-1)e(a-1)f(ao, yo)co - E ( c - 1  lY-l>s(a-1)t(ao, yo)co 

+ E(a-l[X-lb-1}c(Y-1)xobof(ao, Yo) 

+ E(X-lb-l la-1)e(a-1)t(ao,  yo)xobo (using (2.3) above) 

= - E(a-llZ-l>¢(Y-1)zof(ao, Yo) - E<a-l[z-l>e(Y-1)zot(aoYo) 

- E ( c - 1  [y-1)e(a-x)f(ao, yo)co - E ( c - 1  ly-l>e(a-1)t(ao, yo)co 

+ E ( a - 1  [e-1}c(y-1)cof(ao, Yo) + ~~(a-1 [Z-l>~(y-1)zof(ao, Yo 

+ E ( c - 1  [y-1}~(a-1)t(ao, yo)co + E(z-1 ly-l>s(a-x)t(ao, yo)zo 

= - E ( a - 1  ]Z-l>e(y-1)zot(aoYo) - E ( c - 1  [y-l>e(a-1)f(ao, yo)co 

+ E(a-llc-1)~(y-1)cof(ao,  yo) + E(z-llY-l>~(a-1)t(ao, Yo)Zo. 

Next, using (2.2) and Definition 1.6 (c), (d) and (e), we follow the method used 
in showing (2.3) to show the following: 

E[-(a-1]z-l>e(Y-1)zot(ao, Yo) + (a-1]c-l>e(y-x)cof(ao, Yo)] 

= E[-<a-21z-2>~(Y-2)<Z-l[a-ly-l>t(ao, yo)zo 

-~- (a-2[c-2)~(y-2)(c-1]a-lY_l> f (ao, yo)co] 

= E -(a-2[z-3> (z-2[a-l>(z-lly-l>t(ao, yo)zo 

+ E{a-2]c-3}<c-2[a-l><C-1]y-l>f(ao, yo)co 

= E -c(a-1)(z_l  [y-l>t(ao, yo)zo + E c(a-1)(C-l[Y-lf(ao, yo)Co. 

Substituting this equality into our previous expression for [a, x][b,y] and can- 
celling, we see that [a, xl[b, y] = O. | 
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Recall that  the H-commutator  ideal of R is the ideal generated by JR, R]. 

COROLLARY 2.4: Under the hypotheses of  the theorem, the H-commutator  ideal 

of R is nilpotent. I f  R is also H-semiprime, then R is H-commutative.  

Proof" It suffices to show that Jr, s]w[u, v] = 0 Vr, s, u, v, w C R. But by the 

definition of the bracket, Jr, s]w = [Jr, s], w] + ~-~(r_ls_llW_l)wo[ro, So]. Now 

apply the theorem. | 

When H is cocommutative as well and £ is an H-Lie algebra, we prove an 

identity for the elements of £. This includes the case when £ is a Lie coloralgebra, 

for then H -- kG is cocommutative, and thus extends [BK]. 

We call £ H-abelian if [£, £] = 0. 

THEOREM 2.5: Let £ be a Lie algebra in the category Hj~ where H is a 

cotriangular cocommutatiye Hopf  algebra. Suppose £ -- A + Z where A and 

Z are Lie subalgebras in gj~ which are H-abelian. Then we have 

[[z, L], [z, ~]] = o. 

Proo~ It  suffices to show that  [[a,x],[b,y]] = 0 holds for a,b • A and x , y  • X .  

Now by (1.9), 

[[a, x], [b, y]] = ~ - { a - i x - l i b - i V - i )  [[[bo, yo], ao], xo] 

- E(a-l]X-lb-ly-1)[[xo, [Do, yo]], ao] 

= E ( a - 2 x - 1  Ib-2y-2){(b-ly-1 In-l)[[[ao, Do], yo], xo] 

+ (b-~ly-la-~)[[[yo, ao], bo], ~0]} 

+ Z<a-~l~-2b-~y-2><~-llb-,y-~>[[[bo, ~0], xo], ao] 

= E ( a - 2 x - 1  Ib-2y-2)(b-1 ly-la-1)[[[Yo, ao], bo]xo] 

- E(a_ilx_3b_3Y_3)(x_21b_2y_2) 

× {(b-ly-11X-l>[[[xo, bo], Yo], ao] + 0}. 

For each term [Yo, ao] and [xo, bo] we may substitute 

[yo, ao] = c(yo, ao) + z(yo, no) and [xo, bo] = d(xo, bo) + w(Xo, bo) 
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where c, d E A and z, w E Z. It follows that 

37 

[[a, x], [b, y]] = ~(a_2x_~lb_2y_2)(b_~[y_xa_~)[[z, bo], xo] 

- E(a-l[X-lb-ly-1}[[d, Yo], ao] 

= E -(a-2x-2 [b-3Y-2)(b-2 ]y-la-1) 
× {o + Z(z_xlb_l~_~)[[bo, xo], zo]} 

+ E(a-l[X-lb-ly-2){O + (d-1]y-la-1}[[yo, ao], do]} 

(b-2 [y-2a-2} (y-la-1 [b_ i x - 1  ) [[bo, xo], zo] -{- 2~dterm 

(sincep([y,a])----EY-la-t®[yo, ao]---EC-l®cO+ZZ-l®zo) 

= E -(a-2x-21b-ly-2)(Y-la-l[x-1}[[b°' xo], zo] + 2 nd term 

=- E ( a - 2 2 : - 3  [b-2Y-2)(y-la-1 Ix-2} (b-1 IX-l)[[xo, bo], zo] 

+ E(a-1]x-2b-2y-2}(x-lb-llY-la-1)[[yo, ao], do] 

(sineep([x, bD=Ex-lb-le[xo,  bo l=Ed- l®do+ZW-t®Wo ) 

= E (a-2x-31b-2y-2)(y-la-1 Ix-2)(b-1 Ix-l} [d, zo] 

+ E(a-ll~-~b-2y-~)(x_lb_lly_la_l/[Z, do] 

= E(a-2x-3]b-2y-2}(y-la_l]X_2}(b_l]X_l}[d, z] 

+ E(a_l]x_2b_2y_2)(x_lb_llY_Xa_l)[Z, d] 

= _ E ( a _ ~ _ ~ t b _ 2 y _ ~ ) ( ~ _ ~ a _ l l X _ 2 )  

(b-1]x-1}(d-1]z-1)[zo, do] + 2 ~a term 

= - E(a_3x_41b_3y_3)(y_2a_2[x_3)(b_2[x_2) 
× (X-lb-1]Y-la-1)[z,d] + 2~dterm. 

Now we need to compare the 

(a-3x-4 Ib-3Y-3)/y-2a-2 Iz-3} (b_2 Ix_2): 
terms (a-x ]x-2b-2y-2) and 
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E (a -3x-3  ]b-2y-2)(y-2a-2 [x-3} (b-2 Ix-2} 

= E(a_4x_5]b_3}(a_4x_4[Y_3)(y_2a_2[x_3)(b_2[x_2) 

= E(a-4x-6lb-3}(a-4x-sly-3)(y-2lx-3} (a-2tx-4)(b-2tx-2) 

= E(a4lb_3)(x_sIb_4)(a_4[y_3}(x_5[y_4)(Y_2lx_3}(a_2lx_4}(b_2lx_2} 

=E(a_3lx_2}(a_21b_2}(a_l]y_2} (since H is cocommutative) 

:E(a_llX_2b_ y_ > 
Thus the whole sum is zero, as required. 1 

3. On  t h e  H-Lie  ideal  s t ruc ture  o f  A 

We first recall Herstein's results [H1], [H2], which generalized the classical facts 

about Lie ideals in matrix rings. He proved that if A is any simple ring, considered 

as a Lie algebra under the usual [ , ], and U is a Lie ideal of A, then either 

U _~ [A, A] or U C_ Z(A), the center of A, unless A has characteristic 2 and is 

four-dimensional over Z(A). It is this result which we would like to extend to 

the case of H-simple algebras. 

However, we note that for H-algebras the four-dimensional case will be an 

exception, in any characteristic. For, the Lie superalgebra A = gl(1, 1) has a 

non-central Lie ideal U properly contained in [A,A] = sl(1,1); see 4.2. We 

conjecture that  for any cotriangular Hopf algebra H and H-simple algebra A in 

HAd, any H-Lie ideal U of A must either contain [A, A] or be contained in ZH(A), 
unless A is 4-dimensional. 

Although unable to prove this in general, we make some progress. The following 

lemma is used frequently. 

LEMMA 3.1: Let A be an algebra in HAd and let m, n, ~ E A. Then 

(a) [m, ne] ---- Ira, n]~ q- •(m_x]n_llno[mo, e], 

(b) [mn, g] = m[n,e] + E(n_lle_l)[m, eo]no. 

If  H is also cocommutative, then 

(c) [ran, £] ---- [m, ng] 4- ~~(m-lln-le-1)[no, eomo]. 
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Proof: (a)[m,n]g 

=mug - ~ {m_l[n_l}nomog 

=rang- ~<m_lln_lg_l>noQmo + E<m_lln_lg_,)nogomo 

- Z<m_lln_ > o. oe 

=[m, n g ] -  ( E  <m_l ]n-l>nomog - E <m-2 ]n-l><m-1 ]g-l>nogomo) 

(by property 1.6c) 

=[m, ng]- E<m_lln_l>no E ( m o g  - E < ( m o ) _ l  Ig_l>go(mo)o) 

(by coassociativity) 

=[m, ne] - E <m_ l In_l)no[mm e]. 

(b) This is similar to (a). 

(c) [m, rig] + >-~<m_lln-,~-l>[no, ~omo] 

= r a n g -  ~-~<m_l ln_l (_1>nogomo + E<m_11n_,~_ l>no~omo 

- 

(by coassociativity and properties of the braiding) 

= rune - E(m_31n_3>(n_2lm_2><m_, le_ l><n_l le_2>eomono 
(since H is cocommutative) 

= rang - ~(m_ln_lle_l>eomono = [ran, e]. m 

Remark 3.2: Part  (a) of the lemma essentially says that d: A --* A given by 

d(a) = [m, a] is a derivation in the category H3d. For, a derivation d would have 

to satisfy 

d. (a ® b) = (d® 1). ( aN b) + (1 N d).  ( aN b) for all a,b E A 

and the fact that  d is a derivation in a symmetric monoidal category means we 

must use the twist map to carry this out. 

Our first result holds for any bialgebra H. It is a replacement for [H2, Lemma 

1.4] in which a different set T(U) was used. See the remarks after Corollary 3.9. 

LEMMA 3.3: Let U be an H-Lie ideal of A, and let S(U) be the subring generated 
by U. Then: 

(a) S(U) is an H-Lie ideal of A, 
(b) if also H is cocommutative, then [S(U), A] C U. 
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Proof" (a) S(U) is an H-comodule by (1.3). To see that it is a Lie ideal, we 

show that  [U '~, A] C_ U n+l for all n < 1. Assume true for n - 1, and choose 

x l , . . . , x n  E U, a E A. Thenby3 .1 (b ) ,  

[xl...x,_ixn, a] = x l . . .  xn_~[~,, a] + E((x~)_l la_~)[~l""" ~ - ~ ,  ao](~)o 

E V~-l[U, A] + IV ~-1, A]U c_ U'~U C U ~+1. 

Thus S(U) is also an H-Lie ideal. 

(b) Again by induction, we show [U ~, A] C_ V. Since H is cocommutative we 

may use Lemma 3.1(c). As before, choose x l , . . . ,  Xn E U and a E A. Then 

[x l . . .  xn_~x~, a] ----[~... xn_l,  x~a] 

+ ~-'~((Xl"" "Xn-1)-li(Xna)-l)[(Xn)O, ( a x l ' ' "  Xn-1)0] 

E[U n-l, A] + IV, A] C [U, A] 

by induction. Thus [S(U), A] _C U. I 

PROPOSITION 3.4: Let A be an algebra in HAd and assume that U is an H-Lie 

ideal of A such that [U, U] ~ O. Then the subring S(U) generated by U contains 

a nonzero H-ideal of A. 

Proof." By Lemma 3.3, replacing U by S(U), we may assume that  U is also a 

subring. Choose u, w E U with [u, w] # 0. For any a e A, by Lemma 3.1 (a) we 

have 

(,) [u, w]a = [u, wa] - Z (u_ l l~_ l )~O[uo ,  a] 

which is in U since U is an H-comodule, a Lie ideal, and a subring. 

Now Vb E A, [b, [u, w]a] E U by Remark 1.14(c). Also 

b[u, w]a = [b, [u, w]a] q- ~(b_llu_lw_la_l)[Uo, wo]aobo. 

Since U is an H-comodule and u, w E U, it follows that  all uo, wo E U, and thus 

[Uo,wo]aobo E U by (*). Thus b[u,w]a E U, and so I := A[U,U]A C_ U. I is 

nonzero since 1 E A and [U, U] ~ 0. I 

In fact, Proposition 3.5 is true even if A does not have a unit element, since 

we may use the ideal 

I =  W + A W + W A + A W A  ~ 0 
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where W = [U, U]. 

In the following results, H will be a Hopf algebra with bijective ant ipode S; 

the inverse of S is denoted S. 

The  proof  of the following lemma is obvious, using (1.10) for par t  (b). 

LEMMA 3.5: f f  H is a Hopf algebra with bijective antipode, then the following 

hold for all x, a E A: 

(a) If  A is an H-comodule algebra, then 

X--I  ® XOa = ~-~p(xao)(S(a-1) ® 1). 

(b) If  A is an H-Lie algebra, then 

~--~ x -1  ® [Xo, a]---- ~ p ( [ x ,  ao])(S(a-1)® 1). 

Note the analogy to the well known formula for A an H-module  algebra: h. a -- 

h2(S(hl)" a) Va E d , h  • H. 

COROLLARY 3.6: The H-center of A, ZH(A), is an H-subcomodule algebra. 

Proof: Let  a C A, r ,s  C ZH(A). Then by Lemma 3.1(a), 

[a, rs] = In, r]s - ~-~(a-lir-1)ro[ao, s] = 0 

since r and s are in the H-center  of A. Thus ZH(A) is a subalgebra. 

The  fact t ha t  ZH(A) is a subcomodule follows from Lemma 3.5(b); let a • 

ZH(A) and x c A. Then  ~ a - 1  ® [ao, x] = ~p([a ,  xo])(S(x_l) ® 1) = 0. Now 

taking the summands  {a_l}  to be linearly independent,  we have [no, x] = 0 for 

each summand  ao. I 

LEMMA 3.7: If  H is a Hopf algebra with bijective antipode, then the annihilator 

of an H-ideM of A is an H-ideal. 

Proof: Let I be an H-ideal  and X its annihilator. Let x C X and z C I. Then  by 

Lem ma  3.5(a), ~-~ X_l ® XoZ = p(xzo)(S(z_l) @ 1) = 0 since I is a subcomodule  

of A. This fact is sufficient to show tha t  X is an H-comodule .  For, we may  

choose the { x - l }  components  of p(x) to be linearly independent  and then each 

XoZ = 0, implying tha t  each x0 component  is in X.  Also, X is clearly an ideal. 

It follows tha t  X is an H-ideal.  I 
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THEOREM 3.8: Let H be a cocommutative Hopf algebra, let A be an H-prime 

H-eomodule algebra and let U be an H-Lie ideal of A such that [U, U] ~ 0. Then 

there exists an H-ideal I of A such that 0 ~ [I, A] C_ U. 

Proof  Consider S(U),  the subring generated by U. Since [U, U] ~ 0, S(U) 

contains a nonzero H-ideal of A, say I, by Proposition 3.4. By Lemma 3.3, 

I C S(U)  implies that [I, A] C U; that [I, A] ¢ 0 we see as follows: 

Suppose [I, A] = 0 and choose x • I. Then 

x[a, b] = [xa, b] - Z ( a _ l ] b _ l ) [ X ,  bo]ao 

by Lemma 3.1(b), and this equals 0 since xa • I and [I,A] = 0. But then 

I[A, A] = 0, giving [A, A] C_ AnnA(I). However, AnnA(I) is an H-ideal since I is 

one, by Lemma 3.7, and A is H-prime, so this implies [A, A] = 0, contradicting 

[U, U] ¢ 0. . 

COROLLARY 3.9: Let H be a cocommutative Hopf  algebra and let A be an 

H-simple algebra in HA/[. I f  U is an H-Lie ideal of A with [U, U] ~ 0, then 

U 2 [A, A]. 

We do not know whether the hypothesis that H is cocommutative is needed 

in Theorem 3.8; however the method of proof does not work otherwise, since 

Proposition 3.4 depends on Lemma 3.1(c), which requires cocommutativity. In 

the classical case, Herstein uses the set T(U) = {a C Alia, A] C U} rather than 

our set S(U); however his arguments also use a version of Lemma 3.1(c) [H1]. In 

our case the set T(U) can be shown to be an H-Lie ideal and subring of A. 

All the above results apply to the special case of H = kG for an abelian group G 

with a symmetric bicharacter. For then H is a cocommutative Hopf algebra (and 

so has a bijective antipode) and is cotriangular. The H-comodule structures of 

a G-graded algebra A : ~ ] ~ a  A9 are the G-graded ones, for example G-graded 

ideals. 

When H = kG as above, we can extend our results to investigate the situation 

of [U, U] = 0. When G is trivial, our arguments here reduce to those of Herstein 

for usual Lie algebras. 

Definition 3.10: Let G be an abelian group with a symmetric bicharacter ( [ }. 

(a) Define G+ := {g • G[ (gig) = 1} and G_ := {g • G I (gig) = -1} .  

Note that  these are the only possibilities for g since symmetry of ( [ ) implies 

(gig)2 = 1, V g • G .  
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(b) For A a G-graded algebra, define 

A + : =  ( ~  Ag and A _ : =  O Ag. 
gEG+ gEG- 

LEMMA 3.11: Assume A is G-graded semiprime of characteristic ¢ 2, and a E A 

is homogeneous such that [a, [a, A]] = 0. Then: 

(a) i ra  E A+ then [a,A] = 0 (thus a E Za (A) ) ,  

(b) ira E A_ then [a 2, A] - 0 (thus a 2 E Za(A) ) .  

Proof'. (a) Say a E Ag, r E Ah, s E Ae. By Lemma 3.1(a), [a, rs] = [a,r]s+ 

(glh)r[a, s]. Thus 

0 =[a, [a, rs]] = [a, [a, r]s] + (glh}[a, r[a, s]] 

= ([a, [a, r]]s + (glghl}[a, r][a, s]) + (gl h) ([a, r][a, s] + (g[ghl}r[a, [a, s]]) 

=(gth} (1 + (gig}) [a, r][a, s]. 

Replacing s by ST, and using the fact tha t  [a, ST] = [a, s]r + (glh}s[a, 7"], we get 

0 = [r, a ] [a ,  = a ] s [ a ,  

and so by graded ant icommutat ivi ty  0 = [r, a]A[a, r]. A graded semiprime implies 

IT, a] = 0 for any homogeneous r E A. But then [a, A] = 0, or a E Za.  

(b) This part  does not need char ¢ 2. For r E Ah,a  E A 9, (gig) = -1 :  

0 =[a, [a, r]] = a[a, r] - {glgh}[a, r]a 

=a(ar - (gih}ra) - {glgh}(ar - (glh)ra)a 

=a2r - (glh)ara - (g]gh}ara + {g[gl~)(glh}ra 2 

= a 2 r -  (g2[h}ra2 = [a 2,r]. 

Thus [a 2, A] = 0. I 

COROLLARY 3.12: Let A be graded semiprime of char ~ 2, and let U be a 

nonzero G-Lie ideal of A such that  [U, U] = 0. Then U+ C_ Zc ,  and a 2 = 0 for 

all homogeneous elements a of U_. 

Proo~ Since [U, U] = O~ [a, [a, A]] -- 0 Va E U. The s ta tement  now follows from 

Lemma 3.11 and the fact tha t  [a,a] = (1 - (gig})a 2 = O. I 

Recall tha t  a G-graded algebra A is g r a d e d  s i m p l e  if it has no non-trivial 

graded ideals, and is a g r a d e d  d o m a i n  if it has no homogeneous zero divisors. 
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COROLLARY 3.13: Let A be a graded simple graded domain of characteristic not 

2. Fix a bicharacter ( ] ) on G and consider A -  in kG M as a Lie coloralgebra 

using ( I ). I f U  is any Lie ideal of A, then either U 2 [A, A] or U = U+ C Z~(A) ,  

the graded center of  A. 

Proof." If [U, U] ¢ 0, then U _D [A, A] by Corollary 3.9. Thus we may assume 

[U,U] - 0. By Corollary 3.12, U_ = 0 since A is a graded domain. Thus 

U = U+ C_ Zc,  and we are done. | 

4. E x a m p l e s  

Example 4.1: Let A = A1, the first Weyl algebra. Writing 

A1 = k(x, y l x y -  yx  = 1}, 

it is Z2-graded by setting (A1)1 -- span of odd-degree monomials and (A1)o = 

span of even-degree monomials. Then A 1 -  becomes a Lie superalgebra in the 

usual way. We claim that any Z2-graded Lie ideal U ¢ k • 1 of A must contain 

[A, A]. For if not, U = Uo is contained in the graded center of A by Corollary 

3.13. But the even part of the graded center is contained in the usual center, 

which is k. 

We now give an example of a non-central Lie ideal. 

Example 4.2: Let k be a field of characteristic ¢ 2. We may express A = gl(1, 1) 

more concretely as follows. Let A = M2(k) be Z2-graded, with 

Then A -  is a Lie superalgebra under the usual superbracket; we have (gig) = - 1  

if Z2 = (g). One can check here that ZG(A) -- {aI]a E k}, the usual center, and 

that [ A , A ] =  { [ a c  ab ] }  ( thesehave "supertrace" 0). Let U =  { [a0  ab ]}., 

then [g ,u]  = 0, [U,A] c U, but g is not graded central and [A,A] ~ g .  

However, U+ = Uo C_ Zc(A),  as predicted by the corollary. 

This example is really not new, as it is well-known that sl(1, 1) is nilpotent. 

More generally, it is known that if A = gl(n,m), then sl(n,m) = [A,A] is a 

simple Lie superalgebra if n ¢ m, and sl(n, n ) / Z  is simple when n ¢ 1, where 

Z is the scalar matrices [FrKp],[Kc]. Moreover, Herstein actually proves that  if 
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A is any simple ring, then [A, A]/[A, A] N Z is a simple Lie algebra unless A is 

four-dimensional over Z and A has characteristic 2. Thus there may be some 

hope of showing that  in general, if A is H-simple, then [A, A]/[A, A] A ZH is a 

simple H-Lie algebra except for some low-dimensional cases. 

I t  does not seem to be easy to give examples of algebras A in HA/I such that  

the H-Lie algebra A -  cannot also be described as a G-Lie coloralgebra for some 

group G for which A is a G-graded algebra. In fact many of the known exam- 

ples have this property; in particular we show this for examples in H.A/[ when 

H = Oq(M~(k))  is eotriangular. We use the Fadeev-Reshet ikhin-Takhtadjan 

construction of Oq(Mn(k))  a s  formulated in [LT] and [Sm]. Note that  in order to 

form the generalized Lie algebras we need a symmetric category, and so H must 

be cotriangular. This in turn necessitates that  the braiding be symmetric,  i.e. 

R 2 = I ,  hence that  q2 = 1. 

Example 4.3: Let k be a field of characteristic ~ 2 and let H = Oq(M2(k)) with 

q = - 1 .  Then the following hold: 

(1) H = OR(M,~(k)) = k(t~)/IR, where i , j  E { 1 , . . . , n } ,  for 

R=-Ee~+Ee{~ and B=roR=-Ee~+Ee{~ 
i#j i#j 

where e~j ~ is the n 2 × n 2 matrix with 1 in the i j-row and k/-column (the rows 

and columns are numbered lexicographically). IR is the ideal of relations 

in k(t{> determined by B = T o R (see [Sm, pp. 155-158]). 

For example, if n = 2 then 

R =  

- 1  0 0 0 
0 1 0 0 

0 0 1 0 
0 0 0 - 1  

and so B = 

- 1  0 0 0 
0 0 1 0 
0 1 0 0 
0 0 0 - 1  

Thus, setting T j = t~ + IR, H has generators T j with relations as follows: for 

a n y 2 × 2 " s u b m a t r i x "  [ T~ Tm ] (where i < j and k < m), adjacent entries T?T? 
(horizontally or vertically) anticommute, whereas diagonally opposite elements 

commute.  

H is a bialgebra by setting 

n 

A T / =  Z T, ® and -- 
k=l 



46 Y. BAHTURIN, D. FISCHMAN AND S. MONTGOMERY Isr. J. Math. 

(2) H has a braiding as in [LT] given by <T) I T  f )  = Bi?.  Explicitly, this says 

in our case: 

{ T ~ I T ~ ) = - I  and {T~ I T]I  = I Vi # j , 

and for all other  pairs of generators,  {T~ ITS)  = 0. Since R 2 = I ,  the 

braiding is symmet r i c  and H is cotriangular.  

(3) A = H is an H-comodule  algebra as usual, by taking p -- A. Thus  we m a y  

consider H -  as an H-Lie  algebra. Using par t  (2) and Example  1.11, we 

compute  the bracket  [, ] on generators: 

T ~ Tj1 = :Tf - E <w i ><<, 
rtz~n 

:rtrf <<I ' 
- 

T • T f + T f T ?  i f i  : j ,  
= T i k T f - T f T ) i f i C j .  

T i [T i. T j] In par t icular ,  [ i ,T~] = 2(2/"/{) 2 a n d ,  ~, j j = 0. 

PROPOSITION 4.4: Consider A -  = H -  with [, ] as above. 

(a) I f  n > 1, it is not  possible to give H a Z2-grading such that  [, ] is the Lie 

superbracket. 

(b) For G = (g2) n, H is a G-graded algebra such that  the G-Lie bracket 

coincides with [, ] as above. 

Proof: (a) First ,  assume H is Zz-graded,  say H = Ho • H1, such t ha t  H -  is a 

Lie supera lgebra  under  [ ,  ]. Let  T / = zo + zl,  with zo E ( H - ) o ,  zl E ( H - ) I .  
T i Then  [ i ,T~] = [zo + zl, zo + z,] = [zo, zo] + [zo, zl] + [Zl,ZO] + [zl, zl] = 2Zl 2. 

For, the bracket  on even elements is the usual one, by graded an t i commuta t iv i ty  

[Zo, ZJ = - ( - 1 ) ° l [ z l , z o ]  = - [Z l ,  Zo], and [Zl, Zl] = z 2 + Zl 2 = 2z~ since Zl is 

IT i T q  = 2(21"/) 2 = 2(Zo 2 + ZoZl + ZlZo + z21). Thus  odd. By Example  4.3 (3), L i ,  iJ 

-1"2 _- zg+zozl+zlzo+z21; compar ing  even and odd components  gives zt 2 = Xo+Zl,2 2 

so Zo = 0 since H is a domain.  Hence each T/~ must  be odd. But  for i # j ,  

T i T j] i J _ T J T  ~ contradict ing T~ and Tj  odd. ~, j j = T ; T j  i ~' 

(b) Consider G = k(Z2) ~ = ( g j  .x - . .  x (g,) .  Then  kG is cotr iangular  via the 

b icharacter  on (Z2) n given by 

1 i f i # j  
( g i l g f ) =  - 1  i f i = j  
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extended linearly to kG. Give H a G-grading by setting deg(T j )  = gi and 

consider H as a G-Lie coloralgebra via [ , ]a defined using the bicharacter. 

Using the relations in Example 4.3 it is straightforward to check that  the two 

brackets coincide. 

Example 4.5: Consider H as in the previous example and V an H-comodule with 

basis {X1 . . . . .  X,~}. The H-symmetr ic  algebra (also called the quantum plane) 

and the H-exterior algebra of V are defined to be, respectively: 

SB(V)  = T ( V ) / ( #  o (id - r ) (Xi  (;/Xj), 

EB(V)  = T ( V ) / p  o (id + r ) (Xi  ~ Xj).  

Then S u ( V )  is H-commutat ive  [CW], hence its associated H-Lie algebra is 

trivial. As for EB(V)  = k ( X 1 , . . . , X n  I X i X j  = - X j X i  Vi ¢ j}, it does 

have a non-trivial H-Lie structure as follows: 

&] =x xj - Z(Tik I 
k,g 

= x ~ x j  - (T~ IT]).¥jx~ 
=2x~xj. 

Here, as in the previous example, EB(V)  is not a Lie superalgebra but is a Lie 

coloralgebra for G = (Z2) ' .  

Note that  choosing C = - B  instead of B would also satisfy the requirements 

for K = OC(Mn(k))  to be a cotriangular bialgebra. Tile above algebras change 

roles with respect to C: SB(V)  TM E c ( V )  has a non-trivial K-Lie structure, and 

EB(V)  ~ S c ( V )  has a trivial K-Lie structure. 
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